Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved extremely effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, owing to the many design choices involved in empirically successful algorithms, it can be very hard to establish where the benefits are actually coming from. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a general theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows a learned model to generalize. In these experiments, we take care to control for other factors in order to isolate, insofar as possible, the benefit of using experience generated by a learned model relative to ER alone.
translated by 谷歌翻译
价值迭代(VI)是一种基础动态编程方法,对于最佳控制和强化学习的学习和计划很重要。 VI分批进行,其中必须完成对每个状态值的更新,然后才能开始下一批更新。如果状态空间较大,完成单批次的昂贵,那么对于许多应用来说,VI不切实际。异步VI通过一次,就地和任意顺序一次更新一个状态来帮助解决大型状态空间问题。但是,异步VI仍然需要在整个动作空间上最大化,这使得对具有较大动作空间的域不切实际。为了解决这个问题,我们提出了双重同步价值迭代(DAVI),这是一种新算法,将异步从各州到州和行动的概念推广。更具体地说,DAVI在可以使用用户定义的大小的采样子集上最大化。使用采样来减少计算的这种简单方法使VI具有类似吸引人的理论属性,而无需等待每个更新中的整个动作空间进行全面扫描。在本文中,我们显示了DAVI收敛到最佳值函数,概率是,以接近几何的速率与概率1-delta收敛,并在计算时间中返回近乎最佳的策略,该策略几乎与先前建立的对VI结合的限制。我们还从经验上证明了Davi在几个实验中的有效性。
translated by 谷歌翻译
具有离散随机变量的培训神经网络具有独特的挑战。 BackPropagation不可用于直接适用,并且在具有连续随机变量的网络中使用的Reparameterization技巧。为了解决这一挑战,我们呈现了后视网络信用分配(HNCA),这是一种用于离散随机单元网络的新型梯度估计算法。 HNCA根据其产出在网络中的直系儿童的程度为每个单位分配信贷。我们证明,与钢筋估计器相比,HNCA产生了降低的方差,而计算成本类似于背部衰退的差异。我们首先将HNCA应用于上下文的匪徒设置,以优化代理未知的奖励函数。在这种环境中,我们经验证明HNCA显着优于增强,表明我们理论分析所暗示的差异是显着和有影响力的。然后,我们可以展示如何扩展HNCA以优化随机单位网络输出的更通用功能,其中该功能是代理商已知的。我们应用此扩展版本的HNCA来培训离散变分自动编码器,并经验证明它对其他强的方法有利地进行比较。我们认为,HNCA底层的想法可以帮助刺激随机计算图中有效信用分配的新方法。
translated by 谷歌翻译
We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
translated by 谷歌翻译
Learning to predict masked tokens in a sequence has been shown to be a powerful pretraining objective for large-scale language models. After training, such masked language models can provide distributions of tokens conditioned on bidirectional context. In this short draft, we show that such bidirectional conditionals often demonstrate considerable inconsistencies, i.e., they can not be derived from a coherent joint distribution when considered together. We empirically quantify such inconsistencies in the simple scenario of bigrams for two common styles of masked language models: T5-style and BERT-style. For example, we show that T5 models often confuse its own preference regarding two similar bigrams. Such inconsistencies may represent a theoretical pitfall for the research work on sampling sequences based on the bidirectional conditionals learned by BERT-style MLMs. This phenomenon also means that T5-style MLMs capable of infilling will generate discrepant results depending on how much masking is given, which may represent a particular trust issue.
translated by 谷歌翻译
When designing a new API for a large project, developers need to make smart design choices so that their code base can grow sustainably. To ensure that new API components are well designed, developers can learn from existing API components. However, the lack of standardized method for comparing API designs makes this learning process time-consuming and difficult. To address this gap we developed the API-Spector, to the best of our knowledge one of the first API-to-API specification recommendation engines. API-Spector retrieves relevant specification components written in OpenAPI (a widely adopted language used to describe web APIs). API-Spector presents several significant contributions, including: (1) novel methods of processing and extracting key information from OpenAPI specifications, (2) innovative feature extraction techniques that are optimized for the highly technical API specification domain, and (3) a novel log-linear probabilistic model that combines multiple signals to retrieve relevant and high quality OpenAPI specification components given a query specification. We evaluate API-Spector in both quantitative and qualitative tasks and achieve an overall of 91.7% recall@1 and 56.2% F1, which surpasses baseline performance by 15.4% in recall@1 and 3.2% in F1. Overall, API-Spector will allow developers to retrieve relevant OpenAPI specification components from a public or internal database in the early stages of the API development cycle, so that they can learn from existing established examples and potentially identify redundancies in their work. It provides the guidance developers need to accelerate development process and contribute thoughtfully designed APIs that promote code maintainability and quality.
translated by 谷歌翻译
Independent component analysis (ICA) is a blind source separation method to recover source signals of interest from their mixtures. Most existing ICA procedures assume independent sampling. Second-order-statistics-based source separation methods have been developed based on parametric time series models for the mixtures from the autocorrelated sources. However, the second-order-statistics-based methods cannot separate the sources accurately when the sources have temporal autocorrelations with mixed spectra. To address this issue, we propose a new ICA method by estimating spectral density functions and line spectra of the source signals using cubic splines and indicator functions, respectively. The mixed spectra and the mixing matrix are estimated by maximizing the Whittle likelihood function. We illustrate the performance of the proposed method through simulation experiments and an EEG data application. The numerical results indicate that our approach outperforms existing ICA methods, including SOBI algorithms. In addition, we investigate the asymptotic behavior of the proposed method.
translated by 谷歌翻译
Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by ``exploding variance'' in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding variance and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement without compromising performance.
translated by 谷歌翻译
We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization.
translated by 谷歌翻译
Federated learning (FL) has emerged as a solution to deal with the risk of privacy leaks in machine learning training. This approach allows a variety of mobile devices to collaboratively train a machine learning model without sharing the raw on-device training data with the cloud. However, efficient edge deployment of FL is challenging because of the system/data heterogeneity and runtime variance. This paper optimizes the energy-efficiency of FL use cases while guaranteeing model convergence, by accounting for the aforementioned challenges. We propose FedGPO based on a reinforcement learning, which learns how to identify optimal global parameters (B, E, K) for each FL aggregation round adapting to the system/data heterogeneity and stochastic runtime variance. In our experiments, FedGPO improves the model convergence time by 2.4 times, and achieves 3.6 times higher energy efficiency over the baseline settings, respectively.
translated by 谷歌翻译